Bonding Properties of trans-PtCl₂XY (X = C₂H₄; CO; Y = 4-R-Py). I. Infrared and Raman Spectra

M. A. M. MEESTER, D. J. STUFKENS and K. VRIEZE

Anorganisch Chemisch Laboratorium, University of Amsterdam, Nieuwe Achtergracht 164-I 66, Amsterdam, The Netherlands Received November 18, 1974

The infrared and Raman spectra of trans-PtCl₂XY The infrared spectra between $30-550$ cm⁻¹ for most $(X = C₂H₄; CO; Y = 4-R-Py)$ are presented. Varia- of the ethylene compounds have been studied by Fritz *tion of R has no influence on* $v(C=C)$ *of* C_2H_4 *, the* and Sellmann¹. Schmidt and Orchin² studied the R-*Pt-ethylene and the Pt-carbonyl frequencies and just* dependence of $\nu(C=C)$ and $\nu(CO)$ for several com*a small influence on v(CO).* plexes.

On the other hand, v(Pt-N) is strongly dependent on R and has a minimum value for R = H. This effect is explained in terms of the o- and n-bonding properties of the 4-R-pyridines and the ionization potentials of platinum.

Introduction

In the complexes tr-PtCl₂X(4-R-Py), variation of R is expected to influence mainly the bonding between Pt and $4-R-Py$, but also by its *trans*-effect the Pt-X bond. A much smaller cis-effect is expected for the Pt-Cl bond. Information about these effects can be obtained from X-ray results and from various spectroscopic techniques, such as NMR, NQR, infrared, Raman and UV.

Here we report our investigation of the Raman and infrared spectra of both tr-PtCl₂(C₂H₄)(4-R-Py) and $tr-PtCl₂(CO)(4-R-Py)$ and the interpretation of these results in terms of the properties of the Pt-ligand bond.

TABLE I. Analysis Figures for tr -PtCl₂X(4-R-Py).

Our study is a more complete vibrational treatment of these complexes between $100-2000$ cm⁻¹ with the use of both infrared and Raman spectroscopy. Raman spectra of these complexes are reported for the first time.

Experimental

The compounds $tr-PtCl_2(C_2H_4)(4-R-Py)$ were prepared by standard methods². The compounds $tr-PtCl₂$ (C0)(4-R-Py) were all prepared from their corresponding ethylene analogs³.

All the ethylene complexes were yellow, the carbonyl compounds were yellow-green. The tr -PtCl₂(C₂H₄) (4-R-Py) complexes are fairly stable (Table I). On the other hand, the solid compounds $tr-PtCl₂(CO)$ $(4-R-Py)$ had to be kept at 0° C, because they slowly decomposed at room temperature. They are extremely water sensitive.

TABLE II. IR and Raman Frequencies of tr -PtCl₂(C₂H₄)(4-R-Py).^a

$R = NH$,		C_2H_5		CH ₃		CH ₂ OH		H		CI	
IR	R	IR	R	IR	R	IR	\mathbb{R}	IR	R	$_{\rm IR}$	R
1295 166m	1565	$140s(134)$ 153s		131sh 133s(134) 168s	185sh	139sh(131) 167sh		131sh 135s(140)	153m	132m(133)	
177s 191m	202w	177s(178) 199s(194)	173sh 201m(196)	(174) 190m(207) 205 sh	194s 1995(194)	175s(180) 199s(195)	198w(198)	176m(176) 201s(200)	207s(204)	191vs(191)	190m(186) 203sh
214vs	221w	206s(207)	211s(209)	211s(213)	218sh(210)	209s(212)	208w(210)			225s(213)	228w(212)
285s	332sh 338vs	2695	333sh 340vs(340)p	292s(290)	292w 334sh 340vs(340)p	285m(291)	284m 330sh 338vs(339)	238vs(240)	237w 332sh 339vs(340)p	266m(280) 324s(325)	338s(340)p
343vs		348vs	345sh	348vs		3488	354s	343vs		354ys	354vw
387m	385s	3825	385s(387)p.	387m	385s(386)p	388w	384m (386)	377w	377s(387)p	391m	394m(390)p
413m 436m	412w	411m	398w		400m(404)	402w	396vw 403vw	446w	393w 418vw		
481m	481m	483m	477m (484)	479w 500v ₅	480m(483) 503w	474w $\frac{494m}{m}$	476m(476) 491m 1253v _s	470w	472m(483)	483m 502vs	488w(486)p
1259m	1261vs 1253m 1520vs 1523w 1523w		1256vs(1256)p 1523w(1525)p	1252m 1517 vw	1256ys(1254)p 1520m(1526)p	1262m 1519w	1259vs(1255) 1523m(1524)	1260w 1524 vw	1261s(1256)p 1528w(1524)p	1246m	1250s(1255)p 1523m(1524)p

^a The solution data are in parenthesis. The underlined hands are internal ligand bands, vs = very strong, s = strong, m = medium, w = weak, vw = very weak, sh = shoulder, $p = polarised$

IR-11 and IR-12 spectrophotometers and were cali-
tions, together with related modes as $v(C=C)$, $v(CO)$ brated with H₂O, CO₂ and CO. Raman spectra were and δ (CH) are compiled in Table IV. obtained with a Coderg PH 1 spectrophotometer with When possible, data from solutions were used for dc detection. The 637 1 A **line** of a CRL S2Kr+ laser was the assignment. These assignments will be discussed in used as the exciting line. more detail.

Raman spectra of the ethylene complexes had to be taken with the spinning cell as described by Kiefer⁴ because of the photosensitivity of the compounds.

Infrared spectra were recorded for the solid compounds between $100-2000$ cm⁻¹ and in solution between 100-340 cm⁻¹.

Raman spectra were run for solids and $CH₂Cl₂$ solutions (dp measurements) from $100-2000$ cm⁻¹.

Results

The Raman and infrared spectra are compiled in Table II, III and IV. For mutual comparison the Raman spectra of the solid compounds $PtCl₂(C₂H₄)(Py)$ and $PtCl₂(CO)(Py)$ are depicted in Figure 1. Until now Raman spectra have not been measured for these compounds, presumably because many of them easily decompose in the laser beam.

However, with the use of the spinning cell, decomposition could be avoided for most of these substances. Apart from the skeletal vibrations of the complexes, the spectra contain the internal vibrations of the ligands and some additional lattice vibrations for the solids. The internal vibrations of the ligands outside the region of the skeletal vibrations $(> 500 \text{ cm}^{-1})$ have been omitted in Tables II and III with the exception of

Infrared spectra were recorded with Beckman IR-7, $v(C=C)$, δ (CH) and $v(CO)$. The metal ligand vibra-

$\nu(C = C)$ and $\delta_{symm}(CH)$ of Ethylene

It has been shown by Hiraishi⁵ and Powell⁶ that $v(C=C)$ and $\delta_{symm}(CH)$ are strongly coupled to each other.

For Zeise's salt $(KPtCl₃(C₂H₄) \cdot H₂O)⁵$ these modes give rise to two Raman bands at 1522 and 1241 cm⁻¹. For $\nu(C=C)$ a much stronger Raman band is expected than for δ (CH).

Powell⁶ has shown that the relative intensities of these two bands are a measure of the mixing of these vibrations.

Just as for Zeise's salt⁵, all our ethylene complexes show a strong Raman band at about 1256 cm^{-1} and a much weaker band at about 1524 cm⁻¹. A high contribution of $\nu(C=C)$ to the lower frequency band is assumed for our complexes.

This conclusion is supported by the fact that a replacement of Cl⁻ by pyridine in going from Zeise's salt to tr-PtCl₂(C₂H₄)(Py) shifts the 1241 cm⁻¹ band to 1256 cm⁻¹, but the 1522 cm⁻¹ only to 1524 cm⁻¹.

It may be seen from Table IV that variation of R has hardly any influence on $\nu(C=C)$.

$v(Pt-C₂H_A)$

For the bonding between Pt and C_2H_a it is assumed, in agreement with the Chatt-Dewar^{7,8} model, that Pt

is bonded to both carbon atoms forming a three membered ring⁵. There are two Pt– C_2 stretching vibrations, symmetric and antisymmetric respectively, for which the assignment is straightforward from depolarization measurements. For Zeise's salt and $[PtCl_2(C_2H_4)]_2$ these vibrations are found at about 400 and 490 cm^{-1} All our C_2H_4 complexes show two bands at about 385 and 480 cm^{-1} respectively, which are not present in the spectra of the corresponding tr-PtCl₂(CO)(4-R-
Py) and tr-PtCl₂(4-R-Py)₂^{9,10} complexes. The lower frequency band is strong in the Raman and polarized and therefore assigned to the symmetrical stretch; the higher frequency one is weaker and depolarized (v_{as}) $(Pt-C₂)$). This assignment is opposite to the one given by Fritz and Sellmann¹ on the basis of their infrared measurements.

Comparing these results with the frequencies of Zeise's salt $(404 \text{ and } 492 \text{ cm}^{-1})$ we may conclude that our Pt-ethylene bond is somewhat weaker because of the stronger trans-influence of the pyridine group. This is also reflected in the higher value of $v(C=C)$ in our complexes with respect to Zeise's salt (1241 cm⁻¹).

Again it may be seen from Table IV that variation of R hardly influences either $Pt-C_2$ vibration.

$\nu(Pt-CO)$ and $\delta(Pt-CO)$

Comparing the frequency region of the skeletal modes for the carbonyl and ethylene compounds, three more bands appear in the infrared spectra of the carbonyl complexes at about 480, 512 and 545 $cm⁻¹$ (the band at 480 cm^{-1} in the ethylene compounds belongs to the $v_{\text{as}}(\text{Pt}-\text{C}_2)$).

Three Pt-carbonyl vibrations are expected for a C_{2v} point group, considering the pyridine ligand as a single atom: two Pt-CO bending modes $(B_1 \text{ and } B_2)$ and one Pt-CO stretching vibration (A_1) , all modes being IR allowed and Raman active. There is not much agreement in the literature about the assignment of these bands. Gribov et al.¹¹ discussed these bands in cis- and trans- $PtCl_2(CO)(NH_3)$. They assigned the 530 cm^{-1} and the 480 cm^{-1} bands to deformation vibrations of the Pt-carbonyl group. Denning and Ware¹² investigated $KPtCl₃(CO)$ and assigned the 530 cm⁻¹ band to ν (Pt-CO) and the 480 cm⁻¹ band to δ (PtCO), because of the polarization of the 530 cm⁻¹ band. Recently Cleare and Griffith¹³ have also studied the $[PLC]_3(CO)^{-1}$ ion. They gave the opposite assignment for the bands on the basis of the intensities and state of polarization in the Raman spectra. This assignment is in agreement with a study by Adams¹⁴ of carbonyl complexes, in which $\delta(MCO)$ has always been found at higher frequency than ν (M-CO). In the Raman spectra of our solutions only one rather strong, polarized band is found at 480 cm⁻¹. Thus, our data support the assignment of Cleare and Griffith, and we assign the 480 cm⁻¹ band to ν (Pt-CO) (A₁). In that case the 512 and 545 cm^{-1} bands have to be the δ (PtCO)'s.

$\nu (CO)$

In the infrared carbonyl stretching region two bands are found for the solids (Table III), a strong band at higher frequency and a weak one. Both bands are also found in solution and the frequency difference of 55 cm^{-1} is in accordance with the assignment of the

M. A. M. Meester, D. J. Stufkens and K. Vr.

weaker band to ν ¹³CO). This isotope band has also and band to $V(x)$. This isotope band has also $\frac{1}{2}$ (8.6 hydroxyquinolinator) Ci. The Raman spectra show a show a spectra show a show a show a show a show $\frac{1}{2}$ show $\frac{1}{2}$ show a $(8-hydroxyquinolinato)$ Cl. The Raman spectra show a polarized band for this vibration at about 2130 cm^{-1} .

The position of $v(CO)$ in $CH₂Cl₂$ solution moves slightly to higher frequency in going to a more electronwithdrawing substituent in the pyridine ring. $tr-PtCl₂$ $(CO)(4-Br-Py)$ disagrees with this order, but for this compound we had to use results for the solid because
of low solubility.

v(Pt-Cl)

 T_{eff} such vibrations are expected to appear for both ϵ $\frac{1}{100}$ and $\frac{1}{200}$ and $\frac{1}{200}$ complexes in the frequency region $\frac{1}{200}$ regions in the frequency region C_2H_4 and CO complexes in the frequency region $300-350$ cm⁻¹ according to the results for other *tr*- $PtCl₂XY$ complexes^{16, 17}. Because of the presence of a centre of symmetry for the Cl atoms, an alternation $\frac{1}{2}$ internation is expected for $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ is expected for $\frac{1}{2}$ m_{c} and m_{c} is expected for the symfactor and antisymmetric $r = c_1$ stronging, prodes. In $\frac{1}{\sqrt{1-\mu}}$ in the complexes a strong, polarized band is $\frac{1}{2}$ can be can be assigned to vertex in the expected in the expected in the expected is $\frac{1}{2}$. $\frac{1}{2}$ be assigned to $v_s(t)$ i.e., the expected isolope noing is found for hearty an complexes in the sond ne specual ine anusymmetric vibration, which is R_{H} in the intervention of $\frac{1}{248}$ cman, is strong in the initial curvature of $\frac{1}{2}$

The frequency values of both vibrations show only small irregular changes on varying R in the pyridine ring. Thus, the cis effect is very small. This may also \mathbf{g} . Thus, the cis chect is very small. This may also concluded from the C, HQR frequence have been recorded for the C_2H_4 complexes³⁰.

For all the complexes the frequency value is about 21.2 Mhz. Until now no NQR signals could be recorded for the carbonyl complexes.

v(Pt-N)

For many pyridine complexes", the M-N stretching vi many pyriume complexes, the M-N sucteming vibration has been identified between 200 and 300 cm^{-1} The IR spectra of all our complexes, CO as well as C_2H_4 , show a strong band in this region, not found in the infrared spectra of e.g. Zeise's salt¹ and tr-PtCl₂ t_2 t_4 (t_1, t_3) , but present in the imaged special of $\frac{1}{2}$ ($\frac{1}{2}$ ($\frac{1}{2}$, $\frac{1}{2}$) and $\frac{1}{2}$ ($\frac{1}{3}$) . It is the only vibration which is really dependent on the nature of R and is therefore assigned to ν (Pt-N). In agreement with the results for $PtCl₂(4-R-Py)₂$, this vibration cannot normally be detected in the Raman spectra because of the low polarizability of the Pt-Py band. It appears from the infrared spectra that this vibration especially shifts appreciably in going from solution to the solid state. Normally the frequency is lowered, presumably because of intermolecular interactions via the R group of pyridine in the solids. Therefore, frequency values for the compounds in solution are used in our assignment and discussion of the results in the next section.

í.

Figure 1. Raman spectra of tr-PtCl₂(C₂H₄)(Py) (A) and tr-PtCl₂(CO)(Py) (B) for the solid compounds.

Skeletul Deformation Modes retal *Deformation modes* and *in the region* in the region in the region in the region of the r

All these deformation modes are found in the region $120-210$ cm⁻¹. Assignment of these vibrations is dif-
ficult. T

ring and me close together in a small frequency range and may coincide and couple with lattice modes. Besides, no reliable depolarization measurements can be made for the lower frequency bands. However, for some of these modes, the assignment is reliable. All tr-PtCl₂XY complexes, so far investigated^{10, 12, 20} show two bands in the infrared and Raman spectra at about 130 cm⁻¹ and 160 cm^{-1} respectively, which are not found in the corresponding tr-PtBr₂XY complexes¹⁰. They are therefore assigned to the Pt-Cl deformations. These bands are not dependent on R.

Another band for which the assignment is straightforward is found at about 205 cm⁻¹ in the Pt- C_2H_4 complexes. It is not present in the CO complexes and

 $\ddot{}$ in the Ir-PtCl, and $\ddot{}$ found for $\ddot{}$ if the n -FtC_{l2}(4-K-Fy)₂, but also found for Zeise. salt. Therefore, this band is assigned to a $Pt-C_2$ deformation mode.

Discussion

The most important result from the vibrational specthe most important result from the violational spectra, as seen from Tables II, III and IV is the manner in which $v(Pt-N)$ depends on R. However, before we discuss these results, we have to consider the coupling of ν (Pt-N) with other skeletal modes. $U(T-T)$ with other skeletal floods.

It appears from the specific that variation of κ only affects the position of $v(Pt-N)$ without any regular shift for $v_s(Pt-C_2)$ and $v_s(Pt-C_1)$. Such regular shifts would have to occur if a strong coupling between these modes existed, just as in the case of $\nu(C=C)$ and δ (CH).

Since the mass changes are small in the 4-R-Py series, with the exception of $R = Br$ and $CO_2C_2H_5$, the frequency change of $v(Pt-N)$ with R is mainly due to a change in the strength of the Pt-N bond. This conclusion is in accordance with the result of Wong and Brewer, that the magnitude of the metal-pyridine stretching frequency may be used as a measure of the coordination bond strength between copper and pyri-
dine²¹⁻²⁴.

The dependence of $v(Pt-N)$ on R is shown in Table IV. It is clear that this vibration does not change in the same way as the basicity or Hammett σ_{p} parameter of R. In this respect our results differ from the data given by Fritz and Sellmann' for these compounds. The result is not surprising, since the basicity is derived purely from the protonation of N without taking into account the π -bonding property of pyridine.

In fact, the strength of the Pt-Py bond is determined by both σ - and π -bonding properties of Pt and pyridine.

In going from $R = CH_3$ to $R = H$ the σ -bond strength decreases, while the π -bonding is of much less importance here. As a consequence $v(Pt-N)$ is lowered. On going from $R = H$ to $R = CN$, the σ -bond further decreases, but this effect is now compensated by a strengthening of the π -bond with an accompanying increase of $v(Pt-N)$. As a result a minimum for $R = H$ in ν (Pt-N) is found in both CO and C₂H₄ complexes.

This behaviour is strongly reminiscent to the observations made for the case of the equilibrium studies²⁵:

$$
CH_3(CH_2)_9CH = CH_2 + (C_6H_5CH = CH_2)PtCl_2
$$

(4-R-PyO) \rightleftharpoons (CH₃(CH₂)₉CH = CH₂)PtCl₂
(4-R-PyO) + C₆H₅(CH = CH₂)

for which a minimum value of K_{eq} has been found for $R = H$. The irregularity of the increase of ν (Pt-N) from $R = H$ to $R = CN$ is caused by the difference between the decrease in σ -bonding ability and the increase in π -bonding ability for the various substituents. The extreme low σ -bonding ability for R = CN is responsible for the rather low value of ν (Pt-N).

The same dependence of the $\nu(M-N)$ frequency and R as observed for our complexes, has been found for the $ZnCl₂(4-R-pyr)$ ₂ complexes. On the other hand, a correlation between $\nu(M-N)$ and Hammett σ_p parameter has been observed for the CuCl₂(4-R pyr ₂²¹⁻²⁴. Wong and Brewer explained this behaviour by the strong σ -bonding ability of Cu, while for Zn the σ - and π -bonding properties are weaker and of more equal importance. They related this behaviour to the 1st and 2nd ionization potentials (IP) of the metal. Considering the IP's of Pt (9.000 and 18.56eV) in connection with those of Cu (7.724 and 20.29eV) and Zn (9.391 and 17.96eV) we see that the IP's of Pt are close to those of Zn^{26} . Thus, our relation between ν (Pt-N) and R is not in disagreement with the explanation given by Wong and Brewer. Recently, Pfeffer *et al."* investigated the IR and Raman spectra of $tr-PtCl₂(4-R-Py)₂$.

They also found the irregular dependence of ν (Pt-N) on R as recorded for our complexes, but they gave no sound explanation for this effect.

A subject of our further investigation will be the influence of *trans* ligands other than CO and C_2H_4 , on the bond strength dependence on R for the Pt-4-R-Py bond. The *trans* influence of the variation of R on C_2H_4 and CO can easily be understood in terms of the σ - and π -bonding properties of the pyridinegroup. In going from $R = H$ to $R = CH_3$, the Pt-Py σ -bond will be strengthened and the π -bond weakened. The reverse will hold for the $Pt-C_2H_4$ and $Pt-CO$ bond, and variation of R has two opposite effects on these bond strengths. Especially when these effects are small (which is the case when a substituent in a ring is varied) only very small shifts of ν (Pt–C₂) and ν (Pt– CO) would be expected. Because of the smallness of these effects nothing can be concluded about the relative importance of the σ - and π -bond between Pt and ethylene. Further $v(C=C)$ does not change, because this vibration also undergoes the influence of two weak, opposite effects. On the other hand, a change in the Pt-Py σ -bond has much less influence on the C=O bond, because the lone pair of carbon is mainly used in the Pt-CO σ -bond. The accompanying change in the Pt-Py π -bond however affects the C=O bond. Therefore the $trans$ -influence of R is only manifested in a shift of $v(CO)$ in such a way that variation of R from $R = CH_3$ to $R = CN$ causes an increase of $\nu(CO)$. The lowering of $\nu(CO)$ with regard to free CO in these complexes is only about 10 cm^{-1} .

However, this does not mean that π -bonding between Pt^{2+} and CO is negligible in this case. In pure σ -complexes, such as H_3B -CO²⁷, ν (CO) is raised with respect to the free CO ligand from 2143 to 2164 cm^{-1} (compare also the value of $\nu(CO)$ for CO adsorbed on ZnO at 2210 cm^{-1} ²⁸. Thus, we do not agree with the statement of Brause *et al.*³ that π -bonding is not important for $tr-PtCl₂(CO)(4-R-Pv)$ complexes. On the other hand, π -bonding is much weaker here than in many other transition metal-CO complexes. Comparing e.g. the values for $\nu(CO)$ in the CO complexes $KPtCl₃CO¹²$ and tr-Ir(CO)Cl(PPh₃)₂²⁹, we find a much higher frequency in KPtCl₃CO (2126 cm⁻¹) than in Vaska's compound of the isoelectronic Ir⁺ (1967 cm⁻¹).

Acknowledgements

We wish to thank Mr. J. van der Helm and Mr. J.P. Betlem for preparing the compounds and Mr. Y. Tan for the analyses. We are indebted to Mr. Th.L. Snoeck and Mr. G.C. Schoemaker for running the Raman and infrared spectra and Dr. W. Gabes for helpful discussions concerning the Raman spectra.

References

- 1 H.P. Fritz and D. Sellmann. *J. Organometal. Chem., 6, 558 (196h).*
- *2* M. Orchin and P.J. Schmidt. Inorg. *Chim. Acta Rev., 123 (1968).*
- *3* A. R. Brause. M. Rycheck and M. Orchin, *J. Am. Chem. Sot., 89, hSO0 (1967).*
- *4* W. Kiefer and H.J. Bernstein, *Appl. Specfr., 25, 500 (1971).*
- *5* J. Hiraishi, *Spectr. Acta, 25A, 749 (1969).*
- *6* D.B. Powell, J.G. V. Scott and N. Sheppard, Spectr. Acta, *28A, 327 (1972).*
- *7* M.J.S. Dewar, *Bull. Sot. Chin]. France, 18,* C7Y (1953).
- 8 J Chatt and L. A. Duncamon. *J. Chem. Sot.,* 2939 (1953).
- 9 M. Pfeffer, P. Braunstein and J. Dehand, Inorg. Nucl. Chem. *Len., 8, 497 (1972).*
- *10* M. Pfeffer, P. Braunstein and J. Dehand. *Spectr. Chirn. Actu, 30A, 33* 1, 341 (*1974).*
- 11 L.A. Gribov. A.D. Gelman, F.A. Zakharova and M.M. Orlova, *Russ. J. of Inorg. Chem.*, 5, 473 (1960).
- 12 R.G. Denning and M.J. Ware, *Spectr. Acta*, 24A, 1785 *(1968).*
- 13 M.J. Cleare and W.P. Griffith, *J. Chem. Soc. (A)*, 2788 (1970).
- 14 D.M. Adam\, *J. Chem Sot.,* 1771 (1964).
- 15 P.C. Kong and T. Theophanides. *Can. J. Spectr., 14, 105* (1969).
- 16 D. M. Adams, J. Chatt, J. Geratt and A.D. Westland, *J. Chem. Soc., 734 (1964).*
- 17 R.J. Goodfellow, P.L. **Noggin** and A.D. Duddell, *J. Chem. Soc. (A), 504 (1968).*
- 18 R. J. H. Clark and C. S. William\. *Inorg.* Chem., 4, 350 (1965).
- 19 F. Herbelin, J.D. Herbelin. J.P. Matthieu and H. Poulet. *Specfr. Acra,* 22, 1515 (1966).
- 20 J.R. Durig, B.R. Mitchell. D.W. Sink and J.N. Willis, *Spectr. Acta, 23A, 1121 (1967).*
- 21 D.G. Brewer and P.T.T. Wong, *Can. J. of* Chem., 44, 1407 (1966).
- 22 P.T.T. Wong and D. G. Brewer. Can. *J. of Chem.,* 46, 13 I (1968).
- 23 P.T.T. Wong and D.G. Brewer, *Can. J. of Chem.*, 46, *139 (1968).*
- *24* P.T.T. Wong and D.G. Brewer, *Can. J. of Chem., 47, 3589 (1969).*
- *25 S.1.* Shupack and M. Orchin, *J. of Am.* Chem. Sot., 86, 586 (1961).
- 26 C.E. Moore, "Atomic Energy Levels", (1971).
- 27 G. W. Bethke and M. K. Wilson, *J.C.P.*, 26, 1118 (1957).
- *28* T. L. Brown and D.J. Darensbourg. hrorg. *Chem.,* 6, 971 (1967) .
- 29 L. Vaska, Acc. Chem. Res., 1, 335 (1968).
- 30 M.A.M. Meester, D. J. Stufkem and K. Vrieze. to be published.